

Does the Dzungarian racerunner (*Eremias dzungarica* Orlova, Poyarkov, Chirikova, Nazarov, Munkhbaatar, Munkhbayar & Terbish, 2017) occur in China? Species delimitation and identification with DNA barcoding and morphometric analyses

Jin-Long Liu¹, Tatjana N. Dujsebayeva², Marina A. Chirikova², Xiong Gong¹, Da-Jiang Li¹, Xian-Guang Guo^{1,*}

¹ Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China ² Institute of Zoology of Republic of Kazakhstan, Almaty 050060, Kazakhstan

Background

- The taxonomy of The Eremias multiocellataprzewalskii species complex has been historically confusing.
- Orlova et al. (2017) for the first time utilized the DNA barcoding sequences (COI) to infer phylogenetic relationships and propose putative species in the *E. multiocellata*przewalskii species.
- Within this complex, a new species -E. *dzungarica* (Orlova et al. 2017) – has been recently described from western Mongolia and eastern Kazakhstan, but with an apparent distribution gap in northwestern China.

Aim

Utilizing more rigorous barcoding

boundaries in this species complex.

Figure 1

Results and Conclusions

- We detected an absence of a barcoding gap in this complex (Figure 4), which may indicate cryptic species in *Eremias* sp. 3 with high intraspecific diversity and multiple recently evolved species in Clade A (Figure 5).
- Based on evidence from molecular and morphological data, all 30 individuals collected in this study are reliably identified as *E. dzungarica* and confirmed the occurrence of this species in the Altay region, Xinjiang, China.
- Morphological examination revealed many inconsistencies with the original descriptions of E. dzungarica that are mainly associated with sexual dimorphism or a broader range of values in various traits (Figure 3).

Figure 5

techniques to deeply explore the distribution **KAZAKHSTAN** pattern of genetic distance and to test species

Employing molecular and morphological analyses to determine whether E. dzungarica occurs in northwestern China.

Material & Methods

- During 2014 and 2017, we conducted a Sino-Kazh joint field investigation on herpetofauna in eastern Kazakhstan and in the adjacent Junggar Depression in China (Figure 1).
- Thirty specimens from seven sites were collected from eastern Kazakhstan and northwestern Altay region (Figure 2, 3), and initially identified as so-called *E*. multiocellata.
- DNA barcoding diversity analysis (Distance Summary and Barcoding Gap Analysis)
- Phylogenetic analysis (Neighbor-Joining,

Figure 2

. dzungarica (China: Altay, Junggar Depression; E Kazakhstan; 56-62)

Maximum Likelihood and Bayesian inference)

- Species delimitation (BIN, GMYC, ABGD, mPTP and BPP)
- Morphological analyses (ANOVA and two independent samples t-test)

Acknowledgements:

This study was supported by Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20050201) and the National Natural Science Foundation of China (32070433 to X.G.G. and 32000288 to J.L.L.)

Contact information:

Address: No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan, P.R. China E-mail: guoxg@cib.ac.cn