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Abstract: Climate change, uneven distribution of water resources and anthropogenic impact have led
to salinization and land degradation in the southern regions of Kazakhstan. Identification of saline
lands and their mapping is a laborious process associated with a complex of ground measurements.
Data from remote sensing are widely used to solve this problem. In this paper, the problem of
assessing the salinity of the lands of the South Kazakhstan region using remote sensing data is
considered. The aim of the study is to analyze the applicability of machine learning methods to assess
the salinity of agricultural lands in southern Kazakhstan based on remote sensing. The authors present
a salinity dataset obtained from field studies and containing more than 200 laboratory measurements
of soil salinity. Moreover, the authors describe the results of applying several regression reconstruction
algorithms (XGBoost, LightGBM, random forest, Support vector machines, Elastic net, etc.), where
synthetic aperture radar (SAR) data from the Sentinel-1 satellite and optical data in the form of
spectral salinity indices are used as input data. The obtained results show that, in general, these input
data can be used to estimate salinity of the wetted arable land. XGBoost regressor (R2 = 0.282) showed
the best results. Supplementing the radar data with the values of salinity spectral index improves
the result significantly (R2 = 0.356). For the local datasets, the best result shown by the model is
R2 = 0.473 (SAR) and R2 = 0.654 (SAR with spectral indexes), respectively. The study also revealed a
number of problems that justify the need for a broader range of ground surveys and consideration of
multi-year factors affecting soil salinity. Key results of the article: (i) a set of salinity data for different
geographical zones of southern Kazakhstan is presented for the first time; (ii) a method is proposed
for determining soil salinity on the basis of synthetic aperture radar supplemented with optical data,
and this resulted in the improved prediction of the results for the region under consideration; (iii) a
comparison of several types of machine learning models was made and it was found that boosted
models give, on average, the best prediction result; (iv) a method for optimizing the number of
model input parameters using explainable machine learning is proposed; (v) it is shown that the
results obtained in this work are in better agreement with ground-based measurements of electrical
conductivity than the results of the previously proposed global model.

Keywords: soil salinity; synthetic aperture radar; machine learning; regression; XGBoost; LightGBM;
random forest; support vector machines; elastic net
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1. Introduction

Climate change and anthropogenic impact lead to the degradation of agricultural land
due to increased salinity. Climatic factors create a potential danger for soil salinization,
while population growth and uncontrolled intensification of the use of land and water
resources can lead to an abrupt reduction of pastures and arable land’s area [1]. According
to [2], the total area of primary saline soils is about 955 million hectares, and about 77 million
hectares are exposed to secondary salinization, of which 58% are irrigated areas. Nearly
20% of all irrigated land is saline, and this proportion tends to increase despite significant
land reclamation efforts. It is assumed that, by 2050, the salinity of arable land in the world
may exceed 50% [3].

Irrigation of the salinized arable lands and degradation of agricultural lands in the
South of Kazakhstan is a systemic negative factor that most strongly affects four regions
of Kazakhstan: Turkestan, Almaty, Zhambyl and Kyzylorda. The main problem is related
to water resources, which are formed by the transboundary flow of large rivers in the
region (the Syrdarya, Ile and Chu rivers). Kazakhstan is located in the lower reaches
of river basins and is very vulnerable accordingly with regards to a water supply. The
growth of water consumption in the upper parts of the river basins belonging to the
territories of neighboring countries (Uzbekistan, China, Kyrgyzstan) and climate change
create problems in the water supply of irrigated arable land in southern Kazakhstan. The
problem of salinization and its mapping appeared due to the low ensuring of water and
food security in the south of Kazakhstan, where two of the big cities of the Republic are
located (Almaty, Shymkent). There are several modern solutions that are based on remote
sensing monitoring and GIS and have provided solutions for soil salinity.

One such direction is the application of synthetic aperture radar data for estimation of
the salinity of various territories [4,5], as well as combined methods, including both radar
and conditionally optical remote sensing data [6–8].

In this paper, the authors used the data from the field studies sampled during May–July
2022 in three geographically significantly separated areas of southern Kazakhstan. The
synthetic aperture radar (SAR) data from Sentinel-1 satellite and optical data from Landsat-8
in the form of spectral salinity indices were used as remote sensing data.

The aim of the study was to analyze the applicability of these data for estimating the
salinity of the territories, using machine learning methods. At the same time, the applica-
bility of this method was evaluated to territories that differ significantly in geography and
soil condition.

The second task was a comparative analysis of machine-learning algorithms, which
could be used in the future to calculate the salinity of the territories of Kazakhstan.

The main contribution of this study is as follows:

1. A set of field data for the study of salinity in the southern regions of Kazakhstan
was prepared;

2. The method of soil salinity assessment based on SAR data proposed earlier in the
literature was supplemented;

3. The method of salinity assessment was extended by using a combination of multi-
spectral and SAR radar data;

4. A comparative analysis of machine learning algorithms solving the salinity estimation
problem on the proposed data set is performed;

5. The significant input parameters (features) were selected and their effect was esti-
mated using the methods of explainable machine learning (EML);

6. The boundaries of the joint use of obtained field data were determined;
7. The obtained modeling results were compared with the results of one of the known

models of soil salinity assessment.
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Section 2 presents the discussion of scientific papers devoted to solving the salinity
estimation problems using machine learning methods. Section 3 describes the salinity
estimation methods based on several machine learning models. Section 4 presents the
result. Interpretations of the findings are discussed in Section 5. The Section 6 summarizes
the results, describes the limitations of the proposed method and formulates the objectives
of further research.

2. Related Works
2.1. Classical Salinity Estimation Methods Based on Spectral Data

The use of remote sensing data to assess soil salinity has a history of more than 40 years [1].
After reviewing the scientific studies, the authors revealed that studies [9–11] demonstrate a
similar approach to the issue of estimating the salinity level of arable irrigated areas; this
estimation is based on satellite data and GIS technologies, including a description of the
salinity of some areas of irrigated arable land in Kazakhstan [12,13]. Currently, the use
of satellite data and GIS technologies is the most widely used means to monitor arable
land salinity, which in some cases can compete successfully with technically complex and
expensive ground-based monitoring methods. The ideas of various satellite monitoring
techniques are generally similar [14–16]. Some satellite images, or their time series, are
used from various orbital platforms [17–19], including hyperspectral data [20,21], low
spatial resolution satellite data (such as MODIS) [22,23], and radar images [24]. The
spectral channels of the visible and near infrared spectral ranges are used and analyzed
for the detection of soil salinity [14–16]. The different indices of salinity are constructed
in combination with the vegetation indices on the basis of channel combinations; this
allows the creation of a logical system of relationships between the field samples data on
the existing level of arable land salinity and the spectral characteristics of the underlying
surface. Another approach is to use more complex methods, such as clustering algorithms
for remote sensing data and other machine learning methods [25–27].

2.2. Machine Learning Methods in Salinity Estimation Problems

Machine learning methods (ML) are an important subsection of artificial intelligence
(AI), putting into practice the ideas of AI to create learning systems [28]. Machine learning
technologies can effectively solve the nonlinear problem of the relationship between soil
properties and environmental factors [29]. There have been a number of serious results in
solving problems of classification, clustering, and regression analysis in various scientific
fields [30–37], and this is the consequence of using ML methods in the studies devoted to
the soil salinity. starting around 2012.

In the paper [27], the authors provided an estimation and mapping of soil salinity in
the Aral Sea basin; they used data such as terrain indices, height above sea level, remote
sensing data, distance to drainage channels, long-term observations of groundwater levels,
etc. These input variables predict salinity, and an electromagnetic induction instrument
(CM-138) measures the electrical conductivity (EC) of the soil profile down to a depth of
1.5 m in vertical mode. The created classification model obtained an accuracy of estimating
saline soils at close to 90%, the salinity threshold defined as about 0.7 dS m−1. The authors
provided a sensitivity analysis of the model; as a result, the dependence of the model
on such terrain variables as curvature (curv), plan curvature (planc), profile curvature
(profc), and solar radiation (solar) was stated; the terrain factors are shown in descending
order by their importance for the model. The conclusion of the research is that soil salinity
is largely affected by microrelief, convexity, or concavity, which in turn affects surface
water retention.
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In [30], the authors aim to monitor the aquifer of the eastern Nile Delta, Egypt, to
check the level of salinity of groundwater occurring due to seawater intrusion (SWI); with
this purpose, they propose to use the predictive regression model. The initial inputs were
hydrogeological and hydrogeochemical data from the groundwater wells in 1996, 2007,
and 2018, distance from the coastline, aquifer type, and hydraulic pressure. Using these
input data, the authors constructed four baseline ML models allowing the forecasting of
such indicators as the base exchange index (BEX), groundwater quality index for seawater
intrusion (GQISWI), and water. The authors constructed such machine learning models as
logistic regression, Gaussian process regression, feed-forward neural networks (FFNN),
and one of the deep learning models, long short-term memory. The highest scores in terms
of root mean square error (RMSE) and R2 were received from the FFNN model, and testing
showed R2 = 0.9667 for BEX, R2 = 0.9316 for GQISWI, and R2 = 0.9259 for water quality.
The ground samples of soils from arid areas in northwestern China and multispectral
remote sensing data are used in [32]. The authors collected soil samples and determined
the correlation between ground measurements and Landsat-8 OLI and Sentinel-2 MSI
multispectral images. The results showed that the higher resolution Sentinel-2 MSI imagery
gives more accurate results in estimating the salinity in desert areas.

The problem of predicting the location and degree of salinity of territories within the
irrigation systems of the Waalhart and Bride rivers in South Africa was considered in [26].
The digital elevation models (DEMs) are considered as input data: DEM obtained from
the satellite radar data (Shuttle Radar Topography Mission (SRTM)), and DEM based on
photogrammetry (photogrammetrically-extracted digital surface model (DSM)). Areas with
soil electrical conductivity (EC) values > 4 dS/m are indicated as soil with salinity. The
salinity values based on soil samples were used to develop the model, to train the classifier,
and to evaluate the score of the model. The binary classifier (based on the decision tree)
demonstrated accuracy within 75%. The authors of the paper claim that the use of height
data and their derivatives as input data for geo-statistics and machine learning has great
potential for monitoring salt accumulation in the irrigated areas, especially for modeling
subsurface conditions.

In [24], the authors considered the relationship between the backscattering coef-
ficient (BC) and EC for Maha-Sarakham district in the northeast region of Thailand.
ALOS-PALSAR provides data in four polarizations, HH, HV, VH and VV, with a reso-
lution of 12.5 m. The total for the ground measurements is about 500 points from a depth of
5 cm, and the distance between each measurement is 20 m. Each measurement is identified
by GPS with an accuracy of 4 m. The electrical conductivity was evaluated in the laboratory
at 25 ◦C (dS m−1). Several feed forward neural net models have been used to reconstruct
the regression relationship between radar data and ground measurements. The models
showed average values of the coefficient of determination R2 = 0.85 and RMSE = 5.

A similar method for detecting soil salinity from Sentinel-1 radar data was described
in [4]. The authors used a support vector regressor (SVR) to determine salinity, based on
the field data.

An interesting approach was presented to solving the problem of salinity mapping
using radar images and machine learning algorithms for the Mekong Delta were studied
in [33]. The input values were the features generated from Sentinel-1 Synthetic Aperture
Radar (SAR) C-band radar images, and the researchers considered the regression problem
and predicted the electrical conductivity of soil. The generation of features from radar
images was carried out using the method of constructing the Gray Level Co-occurrence
Matrix (GLCM) proposed in [37]. The best result was achieved using the Gaussian Process
Regressor (GPR) model with results of RMSE = 2.885, MAE = 1.897, and R2 = 0.808.
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Recently, the joint use of optical and radar data has gained great popularity. For
example, ref [38] describes the combined use of Sentinel-1 and Sentinel-2 data, as well
as a digital elevation model (DEM). In [7], the data from Sentinel-1 C radar and optical
data from Sentinel-2 are used. Study [6] also uses Sentinel-1 SAR data and Sentinel-2
multispectral data to calculate the normalized differential salinity index (NDSI). The optical
indices NDVI, SAVI, NDSI, SI based on Landsat 8 data and ALOS PALSAR-2 SAR data
were used to form several combined optical radar indices (ORSDI) [3].

It should be noted that the list of input parameters for the developed soil salinity
assessment models varies considerably. Insufficient or excessive number of parameters
can lead to decreased quality of operation of machine learning algorithms. That is why
it is necessary to optimize a set of model input parameters. In this case, the list of input
parameters can be locally dependent. Correlation analysis, the importance of variables in
projection (VIP), competitive adaptive sampling with re-weighting (CARS), the genetic
algorithm (GA) [39–41], a method based on optimization of macro-parameters of the model
and the number of input variables [42] are mentioned as means to solve this problem.

Summing up, it can be noted that algorithms based on decision trees, such as the
above-mentioned decision tree [26], random forest (RF) [43,44], support vector machines
(SVMs) [4,45], boosting models [38,46], and classical FFNN models [27,30,47], are quite
often used as machine learning methods for predicting soil salinity.

According to the available information, the works devoted to the use of combined
SAR and optical spectral bands data are limited to relatively small areas of the territory and
to the application of a small number of machine learning models. However, a comparative
analysis of the applicability of machine learning models and satellite data of different
spectral ranges to substantially different territories, where both cultivated and uncultivated
fields are located, is useful.

3. Method

In this research the authors have developed the approach proposed in [33], so that the
SAR Sentinel-1 data were supplemented with terrain and temperature data, which, as noted
in the literature sources [27,44] and as supported by this research (see Sections 4 and 5),
improve the qualitative performance of the models. The authors also supplemented the
SAR data with optical data, which improved the qualitative performance of the machine-
learning models. In addition, there a comparative analysis of machine learning methods
was performed and the capabilities were evaluated of the proposed salinity prediction
technique for significantly different areas of southern Kazakhstan’s territory.

The flowchart of the process of salinity detection is shown in Figure 1. The process of
training and applying the model consists of the following steps:

1. Obtaining the salinity data using the field studies;
2. Obtaining the radar, multispectral and SRTM data from Google Earth Engine;
3. Extraction of linear back scattering intensity in VV and VH polarizations;
4. Texture analysis using the GLCM method;
5. Application of the machine learning algorithms and evaluation of the quality of the

trained model;
6. Mapping the selected areas of the territory.

Multispectral data from Landsat-8 were obtained and used to calculate the spectral indices.
As a result, as will be shown below, the regressors that demonstrate the best results

were identified, and limitations in the application of the method for individual subsets of
data were determined.
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3.1. Data Preparation

Field studies of the soil were carried out during the expeditions on 23 May (Shelek),
26 May, 17, 18 and 29 June (Kapchagay) and 18 July 2022 (Alakol). The sampling route
was designed taking into account the availability of vehicles and the expected presence
of pronounced areas of saline soil. A portable GPS device (Garmin 65) with a positioning
accuracy of ≤5 m was used to record the geographic coordinates. Although the positioning
accuracy level of the GPS device was not perfect, it was sufficient to ensure reasonable
position matching between the sampling site and satellite image pixels (since 10 m is the
size of 1 image pixel; in other words, a 10 m resolution for the Sentinel 1 satellite). The
sampling locations were photographed and described.

A total of 207 soil samples were collected in the area of Lake Alakol, near Kapchagay
Reservoir and Shelek village. Accordingly, three subsets of soil samples were formed:
Alakol (45 samples), Kapchagay (84 samples), and Shelek (78 samples). Figure 2 shows the
locations of soil sample collection near the Kapchagay reservoir and on the foothill plains
near Lake Alakol.
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Figure 2. Soil sampling locations near Kapchagai Reservoir and Lake Alakol.

Figure 3 shows soil sampling routes. The collection conditions showed significant
differences. Shelek samples were collected on moist loamy arable land with corn plantations
at the end of May. At the same time, samples of Kapchagay were collected on dried hilly
sandy soil mainly outside of ploughed areas. Alacol samples were collected in mixed mode
both within and outside of the arable areas. As will be shown below, this had a significant
impact on the quality of the regression analysis. All soil samples were properly sealed,
labeled, and transported to the laboratory for measurement of their electrical conductivity.
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Figure 3. Map of soil sample collection in Almaty and Zhetysu regions (1, 2—Kapchagay, 3—Alacol,
4—Shelek).

The samples were completely dried and sieved through a 2-mm mesh sieve to remove
vegetation and stone residues. The prepared soil samples were mixed with water at a
ratio of 1:5 (one weight fraction of soil and five weight fractions of water). The obtained
solutions were left to settle for one day for complete dissolution of the fractions. Then, the
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electrical conductivity of the soil was determined using a digital meter (Hanna GroLine
HI9814) at room temperature (25 ◦C).

The data from Sentinel-1 Synthetic Aperture Radar (SAR) and optical data obtained in
April–August 2022 were used as initial data. Figure 4 shows the images synthesized from
the SAR data, which are composed of a combination of colors imitating the reflected radar
signals in the following way: Red is VH, Green is VV, and Blue is VH/VV. The first letter of
the signal code indicates the polarization of the emitted signal and the second letter the
polarization of the reflected signal.
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The pre-processing of Sentinel 1 SAR radar data resulted in a data set, a fragment of
which is shown in Figure 5. The figure demonstrates the set obtained from the SAR data in
April 2022. The entire dataset can be downloaded from the link: https://www.dropbox.com/
sh/djlm3ox8briepv3/AAD691Fa2hPGtLIl5IEZ1Urka?dl=0 (accessed on 1 August 2023).
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The radar dataset consists of field soil samples (electrical conductivity—elco50),
16 features that were generated using a radar image and the GLCM method, tempera-
ture and information about the terrain (dem, slope). Table 1 contains abbreviations and
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descriptions of the dataset. For radar data augmentation, the measured altitude by GPS,
the slope computed with the use of digital elevation model, and temperature data, which
can affect the salinity classification model, were proposed. USGS MODIS Earth Surface
Temperature or land surface temperature (LST) and ground elevation model (ELV) data
were used to extend the data set. The resolution of the images received during the process
were as follows: 1 km for LST and 30 m for ELV. Height above sea level and slope of relief,
or angle of land, were received from ELV data.

Table 1. Names of features and their description.

Name Description

Target value

elco50 Soil salinity, field data

Features generated using SAR Sentinel-1 data

dissimilarity_vv Dissimilarity of gray level co-occurrence matrix for polarization VV

contrast_vv Contrast of gray level co-occurrence matrix for polarization VV

homogeneity_vv Homogeneity of gray level co-occurrence matrix for polarization VV

energy_vv Energy of gray level co-occurrence matrix for polarization VV

entropy_vv Entropy of gray level co-occurrence matrix for polarization VV

gamma_vh Linear backscatter intensity in VV polarization

gamma_vv Linear backscatter intensity in VH polarization

dissimilarity_vh Dissimilarity of gray level co-occurrence matrix for polarization VH

contrast_vh Contrast of gray level co-occurrence matrix for polarization VH

homogeneity_vh Homogeneity of gray level co-occurrence matrix for polarization VH

energy_vh Energy of gray level co-occurrence matrix for polarization VH

entropy_vh Entropy of gray level co-occurrence matrix for polarization VH

correlation_vv Correlation VV

correlation_vh Correlation VH

ASM_vh Angular second moment VH

ASM_vv Angular second moment VV

Environmental features

Long_dec Longitude in decimal coordinates WGS84

Lat_dec Latitude in decimal coordinates WGS84

Altitude Measured of altitude by GPS

temp MODIS land surface temperature

slope Calculated slope from DEM

Spectral indexes (see Table 2)

Table 2. Spectral indices used as input for machine learning models.

Spectral Indexes Ref.

NDSI = red − nir
red + nir [48]

S1 = blue
red [49]

S2 = blue − red
blue + red [49]

S3 =
green × red

blue
[49]
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Table 2. Cont.

Spectral Indexes Ref.

SI1 = 2
√

green × red [50]

SI2 = 2
√

green2 + red2 + nir2 [51]

SI3 = 2
√

green2 + nir2 [52]

SI8 = blue × red
green [53]

WI1 = 0.1761× green + 0.322× red + 0.3396× nir [54]

SSRI = nir
2
√

green × red
[55]

NDSIre = red − swir_16
red + swir_16 *

SI3re = 2
√

green2 + swir_162 *

SSRIre = swir_16
2
√

green × red
*

The following spectral ranges were used to calculate the indices [56]: Band 2, Blue (0.450–0.51 µm), Band 3, Green
(0.53–0.59 µm), Band 4, Red (0.64–0.67 µm), Band 5, Near-Infrared (0.85–0.88 µm), Band 6, SWIR 16 (1.57–1.65 µm),
Band 7, SWIR 22 (2.11–2.29 µm). To use the “swir_16” range data, additional spectral indices are proposed using
this range instead of “nir” (marked with “*”).

The data from Landsat-8 satellite with 30 m. resolution were used to calculate the
spectral indices listed in Table 2.

3.2. Analysis of Data

To train the machine learning models, an approximately equal distribution of objects
with different salinity values is desirable. For this purpose, the target column was converted
into a column of five salinity classes for loam soil according to [57,58]. Table 3 shows the
distribution of samples by salinity class.

Table 3. Distribution of field data by salinity class based on electrical conductivity as EC1:5 for
loam soil.

Salinity Class Class Number Number of Samples EC1:5 Range for
Loams (dS/m)

Non-saline 0 60 0–0.18

Slightly saline 1 42 0.19–0.36

Moderately saline 2 41 0.37–0.72

Highly saline 3 21 0.73–1.45

Severely saline 4 43 >1.45

Due to the fact that the distribution of samples by salinity class was approximately
equal (except for class 3—high saline), it was decided to divide the data set into training
and test randomly, using the standard utility train_test_split Sklearn [59].

An analysis of the correlation of the input parameters of the SAR data shows a
significant relationship with the subset of the analyzed data (Figure 6). For example, in the
Alakol dataset, ASM_Vh has a zero value, while the rest of the data sets demonstrate an
almost 100% correlation with energy_vh. There is a positive correlation between dem, temp
and slope in the Alakol and Kapshagai sets, while in the Shelek set there is a significant
negative one. The correlation between elco50 (target value) and coordinates also differs
significantly for different datasets, including the sign of the correlation.
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In this regard, it was decided to evaluate the performance of the machine learning
models on the Alakol, Kapchagay, and Shelek data subsets separately.

It should be noted that some input parameters can be redundant and even reduce
the quality of the model performance. To optimize the set of properties, random search
algorithms are used, for example, the genetic algorithm [7,60]. The disadvantage of this
approach consists of rather significant computational costs.

The second question is to evaluate the influence of input parameters (features) on the
model results. In other words, this is required to explain the result obtained by the model.
Model specific and model agnostic methods of machine learning interpreting methods
are used to solve this problem [61]. Due to the fact that the authors analyze the machine
learning models based on different mathematical principles, it is convenient to apply an
agnostic interpretation model, such as SHapley Additive exPlanations (SHAP) [62]. The
authors also used the same model, as will be described below, to optimize multiple features.
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3.3. Machine Learning Models

The authors previously considered the possibility of applying a wide range of machine
learning algorithms, both classical and modern [63]. Obviously, the application of deep
learning models could give a good result. However, the generated dataset is relatively
small. The authors are also not aware of similar initial SAR datasets of significant volume
or pre-trained models of deep neural networks to solve the salinity estimation problem,
which would allow the application of transfer learning techniques for its tuning. Therefore,
the use of deep learning models was considered inappropriate. The authors used Busting
models [64], Support vector machines, and classical regression algorithms as a reference
point (base line) for comparative analysis (Table 4).

Table 4. Machine Learning Models.

Regression Model Abbreviation Method References

XGBoost XGB Ensemble learning method based the gradient boosted trees algorithm. [65]

LightGBM LGBM Ensemble learning method based the gradient boosted trees algorithm. [66–68]

Random forest RF Ensemble learning method based on bagging technique [69]

Support vector
machines SVM Linear and non-linear classification based

on the technique named kernel trick [70]

Linear regression LR Linear approach to modeling impact of independent variables to
dependent value or target variable. [71]

Lasso regression Lasso Based on the use of such a regularization mechanism that not only
helps in reducing overfitting but it can help in feature selection. [72]

Ridge regression Ridge A regularization mechanism is used to prevent
over-training (overfitting). [73,74]

Elastic net ElasticNet Hybrid of ridge regression and lasso regularization [75]

To assess the quality of regression models, the following accuracy indicators are
often used [31]: coefficient of determination (R2), Mean squared error (MSE) and Mean
absolute error (MAE). The quality indicators used to estimate the regressors, as well as the
corresponding expressions, are listed in Table 5.

Table 5. Quality metrics for regression models.

Accuracy Index Abbreviation Equation Explanation

Determination
coefficient R2/r2_score

R2 = 1− SSres
SStot

SSres =
mk

∑
i=1

(y(i) − h(i))
2

SStot = ∑mk
i=1 (y

(i) − y)
2
, y = 1

mk
∑mk

i=1 y(i),

where y(i) is the actual value;
h(i) is the estimated value (the value of the

hypothesis function) for the i-th sample;
mk ∈ m is a part of the training sample (the

set of labeled objects)

Mean Absolute
Error MAE MAE = ∑n

i=1 |y(i)−h(i) |
n

where n is a simple size; when evaluating the
performance of the model on the test set n is

the size of the test set

Mean squared
error MSE MSE = ∑n

i=1 (y(i)−h(i))
n

2
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4. Results
4.1. Evaluation of Regression Models

The quality of performance of machine learning models was evaluated by Random
permutations cross-validation (ShuffleSplit). In this case, the raw data are divided into
training and test sets randomly in a given proportion (in this case, 80% is training data,
and 20% is test data). To ensure the statistical significance of the result, such splitting was
performed 200 times for each regressor model. The obtained values of the estimates were
averaged and variance was calculated for them using the statistics library. The results of
the models are shown in Tables 6 and 7 (full results of the calculations are presented in
Appendices A and B), where varMAE, varMSE, VarR2 are the variance of the obtained
estimates, and Duration is the training and estimation time of the model in seconds.

Table 6. Results of machine learning models using SAR data.

Dataset Regression
Model MAE MSE R2 VarMAE VarMSE VarR2 Duration

Fu
ll

D
at

as
et

XGB 0.644 1.991 0.282 0.024 3.542 0.046 28.14647

RF 0.738 2.318 0.093 0.026 3.956 0.131 28.71924

LR 0.913 2.515 −0.02 0.027 3.805 0.033 0.406411

Lasso 0.991 2.522 −0.043 0.023 3.372 0.005 0.380981

ElasticNet 0.991 2.522 −0.043 0.023 3.372 0.005 0.355016

LGBM 0.814 2.178 0.183 0.033 3.721 0.029 11.27983

Ridge 0.884 2.421 0.044 0.023 3.849 0.023 1.218743

SVM 0.791 2.27 0.139 0.031 3.681 0.018 0.627324

Table 7. Results of machine learning models using radar and optical data.

Dataset Regression
Model MAE MSE R2 VarMAE VarMSE VarR2 Duration

Fu
ll

D
at

as
et

XGB 0.569 1.889 0.339 0.023 3.49 0.057 28.16568

RF 0.692 2.349 0.058 0.032 3.925 0.276 39.8665

LR 0.923 2.43 −0.095 0.023 2.712 0.184 0.409904

Lasso 0.991 2.522 −0.043 0.023 3.372 0.005 0.375001

ElasticNet 0.991 2.522 −0.043 0.023 3.372 0.005 0.338127

LGBM 0.69 1.935 0.325 0.03 3.707 0.048 11.27485

Ridge 0.795 2.211 0.145 0.02 3.66 0.055 4.66742

SVM 0.811 2.242 0.145 0.029 3.573 0.015 0.791433

The XGB regressor shows the best results (highlighted in bold). Figure 7 shows a
scatterplot of the salinity measured and predicted by XGB for different data sets. The
diagonal line in the figure shows the optimum line, where the prediction value coincides
with the actual value.
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Figure 7. Scatterplots of laboratory and predicted salinity values for different data sets.

It can be seen that the results of the regressor on the Shelek dataset have the point
density closest to the optimum line. The experiments with this dataset show that R2 = 0.473
using SAR data and R2 = 0.654 for the full set of input variables including radar, spectral
indices, temperature, and terrain information. Without going into detail, it should be noted
that the classification of data using the XGB Classificator with SAR data for five salinity
classes gave an average accuracy of 54%. Applying the same classifier to calculate three
and two classes gives an average accuracy of 65% and 75%, respectively. At the same time,
the use of both spectral indices and radar data gives slightly better average estimates for
classes 5, 3 and 2: 58%, 71%, 77%, respectively.

4.2. Analysis of Influence of Input Parameters

To analyze the dependence of the model results on the input parameters, the authors
used the SHAP library [62]. The results of the analysis of the XGB model are shown in
Figure 8. In the figure, a, c—the influence of the parameters obtained with SAR data;
b, d—the influence of spectral data and optical indices.
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The regression result depends on almost all input parameters. For example, a decrease
of latitude positively affects the salinity value; in other words, the more southern the
considered zone, the more likely is high salinity value; high slope value, on the contrary,
negatively influences the soil salinity degree—high salinity on a slope is improbable.
Temperature is the second most influential parameter. When using the optical data, the
third and fourth most important factors are optical indices.

Due to the significant geographical dispersion of the data sets, the use of coordinate
values in the number of input parameters may not be appropriate. To this end, in Figure 8,
fragments c, d show the effect of parameters without regard to coordinates.

The obtained results allow us to range the input parameters for the regression model.
The maximal influence has the parameter gamma_vh. The second parameter in the rank is
the temperature: the higher the temperature results, the higher the value of the electrical
conductivity (salinity) of the soil. The third and fourth parameters are the optical indices,
water index WI, and salinity index SI2 (Figure 8d): the higher the average WI and SI2
values, the higher the salinity.

It can be assumed that the exclusion of terrain and temperature data from the input
parameters will reduce the quality of the regression models, which is confirmed by the
results of the computational experiment (see Table 8).
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Table 8. Results of regressors performance with the SAR dataset, in which the parameters slope, dem,
temp are excluded.

Dataset Regressor MAE MSE R2 VarMAE VarMSE VarR2 Duration

Fu
ll

D
at

as
et

XGB 0.677 2.053 0.227 0.027 3.329 0.034 29.84913

RF 0.744 2.445 −0.117 0.026 3.258 0.444 29.09285

LR 0.919 2.309 −0.017 0.016 2.727 0.072 0.403919

Lasso 0.969 2.449 −0.047 0.021 3.032 0.011 0.383972

ElasticNet 0.969 2.449 −0.047 0.021 3.032 0.011 0.347101

LGBM 0.763 2.029 0.205 0.026 3.131 0.032 10.7253

Ridge 0.881 2.274 0.049 0.021 2.897 0.019 1.139951

SVM 0.747 2.117 0.183 0.03 3.279 0.034 0.633299

At the same time, the set of input parameters can be reduced without degrading the
quality of the regressors. However, it must be taken into account that the relationship
between the input parameters and the target variable is not linear and the input parameters
affect the result together. Therefore, the simple removal of “insignificant” parameters
can lead to deterioration of regression indicators. In order to remove the parameters that
reduce the performance of the regression model, the authors used the following method.
It is known that SHAP values form an objective relation between the model results and
the input parameters. Consequently, it is possible to exclude from the properties those
variables that do not affect the result and those that have a strong correlation between them.
Figure 9 shows the correlation matrices of the original (left) and reduced (right) sets of
SHAP values.
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After the above-described optimization, the models use 24 input parameters instead
of 36 and their results have improved, especially for XGB, RF, Ridge, and SVR (see Table 9).



Remote Sens. 2023, 15, 4269 17 of 27

Table 9. Results of machine learning models performance after optimizing the number of
input parameters.

Dataset Regressor MAE MSE R2 VarMAE VarMSE VarR2 Duration

Fu
ll

D
at

as
et

.T
he

se
to

f
fe

at
ur

es
ar

e
op

ti
m

iz
ed

.

XGB 0.575 1.858 0.356 0.023 3.526 0.061 32.16551

RF 0.681 2.242 0.138 0.027 3.877 0.128 32.89764

LR 0.88 2.412 −0.065 0.021 3.024 0.225 0.386937

Lasso 0.991 2.522 −0.043 0.023 3.372 0.005 0.351073

ElasticNet 0.991 2.522 −0.043 0.023 3.372 0.005 0.335103

LGBM 0.694 1.929 0.33 0.032 3.766 0.048 10.12191

Ridge 0.764 2.104 0.221 0.02 3.671 0.033 1.68862

SVM 0.71 2.053 0.273 0.029 3.786 0.034 0.608407

The results of the regressors’ performance with an exclusively optimized list of spectral
indices as input are shown in Appendices C and D. The list of input parameters was reduced
from 20 to 16 and the results improved by about 1%.

5. Discussion

To evaluate the obtained results, in addition to the numerical metrics, it is useful to
compare them with the results previously obtained for a given territory with employment
of another model. Figure 10 shows the results of applying the XGB regressor to the salinity
mapping at a site approximately corresponding to site 4 (Shelek) in Figure 3. The model
was trained using the spectral indices. The figure shows a section of the terrain in the
foothills of the Zailiysky Alatau (1) and a satellite image Landsat 8 (band 4, red) (2). The
sites of soil sample collection are marked on the map (1) by green rectangles. The right part
(3) shows the model of predicted salinity levels obtained using Landsat 8, 9 images from 1,
9, 10, 17 and 26 April 2022 (from top to bottom). Green areas correspond to the minimum
level of salinity, and lighter areas, going to yellow and red, to a high level of salinity. Note
that the cloudy days on 9 and 10 April distorted the result. The bottom right (4) shows the
results of the prediction using the RF-based model from [44] based on temperature data
(hereafter Mtemp). In this case, it can be seen that the Mtemp model predicts two classes
of soil salinity, which in general do not coincide with the measured electrical conductivity
values of soil samples and XGB regressor predictions.

Figure 11 illustrates the dynamics of forecasting changes in the condition of the soil
cover in the areas of Zailiisky Alatau on 1 April (2) and 23 August (3), 2022. The zone for
collecting the soil samples (on 23 May 2022) is marked on the map (1) by a white rectangle.
This collection area corresponds to Figure 10. The map in Figure 11 shows approximately
25 times the area of the Zailiiskiy Alatau.

Figure 12 shows the simulation results for Alakol Lake area in comparison with Mtemp
model. It can be seen that the models again show significantly different results.

In general, the computational experiments have shown that the satellite SAR data
can be used to estimate the salinity in the southern regions of Kazakhstan. Expanding the
number of input variables by a set of spectral indices leads to improved results. It can be
stated that:

1. XGBRegressor has the best quality indicators for the considered regressors; LightGBM
is the second in terms of quality indicators.

2. The results of the constructed regression are significantly better on moist cultivated
soil (Shelek) than on the entire data set.

3. The quality of work on the datasets from Alakol and Kapchagay is low. It can be
assumed that sampling in a local area of hilly terrain (Kapchagay) and large sampling
areas in the Alakol region require a more laborious process of soil data generation, for
example, in the form of five-spot sampling [38].



Remote Sens. 2023, 15, 4269 18 of 27

4. Comparison of the results of the XGB regressor with the Mtemp model shows that
the models produce significantly different results. It can be assumed that a possible
reason for the discrepancy is that Mtemp was trained without using data from the
regions of Kazakhstan.
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The resulting regression parameters are relatively worse compared to those given in
articles by other authors [76]. It can be assumed that this is a consequence of the complexity
of the foothill landscape and the large difference in time when performing ground studies.
For example, soil samples from the Kapchagay dataset were collected on dry hilly terrain,
where there were only small (3–5 m) local areas of salinity that were not visible from space.
Samples of the Alacol set were collected during the period of rapid growth of vegetation.
At the same time, the Shelek set was formed from samples collected on a plowed flat area
with seedlings of low height, where salinity manifestations were expressed in relatively
large areas of the field (hundreds of meters).

Large areas of the country and, as a consequence, the variability of the surrounding
conditions leads to the fact that the field and satellite data from different areas may differ
significantly, and their combined use requires the further research. Accounting for terrain
parameters is one way to improve results. A possible solution is to apply deep learning
models [63,77–80], which already demonstrate their advantages in some conditions [81].

It should be noted that UAVs [82] are actively used for solving the problems of
precision agriculture, which make it possible to collect multispectral and hyperspectral
data of high resolution, which are not available for satellite images [39,83,84]. The use of
such data allows a detailed assessment of salinity within relatively small fields of a few
hectares in size [85].

The results of mapping of some regions of South Kazakhstan and high-resolution
illustrations are attached to the article as a Supplementary Materials.



Remote Sens. 2023, 15, 4269 20 of 27

6. Conclusions

Estimating soil salinity for practice, with sufficient accuracy and on the basis of
remotely sensed data, is not an easy process. The main geophysical patterns of soil salinity
are well understood, but soil salinity indicators are variable both spatially and temporally
and depend significantly on the weather conditions, irrigation conditions and the moment
of data collection in the course of field studies.

The experiments have shown that XGBRegressor has the best quality indicators among
the considered regression models (R2 = 0.654 for dataset Shelek). Although SAR data in
general can be used to assess salinity in the southern regions of Kazakhstan, the performed
computational experiments showed that the collected data sets are heterogeneous. On the
wet soil (Shelek dataset), the results are significantly better, while the other two datasets
separately show unsatisfactory results. It can be assumed that this is a consequence of the
complexity of the landscape in the study area, the difference in the time of sampling, and
the different nature and development of the vegetation cover. This fact requires additional
analysis. Perhaps increasing the number of input parameters would help to improve the
regression performance. A possible solution is to use those machine learning methods
that are used for image processing, in other words, convolutional neural networks of
various architectures.

The manifestation of salinity in optical and radar data is not the same. In order to
assess the influence of input parameters, the article, probably for the first time, proposes
a method for ranking and optimizing model input parameters using one of the EML
methods—SHapley Additive exPlanations. In addition, in this work:

• A labeled data set is proposed for the electrical conductivity of soils in Southern
Kazakhstan, which differ significantly in their geographical location;

• The method of soil salinity estimation described in [33] has been modified and ex-
tended with optical data;

• An analysis of several types of machine learning models was performed and it was
shown that boosting regression models generally gives the best result;

• The results of the developed model are compared with the results of the Mtemp
model [44] and it is shown that the developed model provides better agreement with
ground-based measurements of electrical conductivity for this region.

Limitations of the study

1. This study is based on a relatively small amount of field data, which differ significantly
in geophysical indicators of collection sites and collection times;

2. The quality of the work on the regressors significantly depends on the settings. Despite
the search for the best combinations of parameters, it is not possible to analyze all
combinations in a limited study;

3. The considered set of input parameters is not exhaustive. It is quite acceptable to use
the remote sensing data both close to the time of sampling and remote in time.

Future research
In the future, it is planned to:

1. Evaluate the effect on the data of optical range, including infrared, on regression
quality, depending on the time of remote sensing data acquisition;

2. Evaluate the impact of optical and radar data collected within the vegetation growth
season (April–August) or for a longer period of time;

3. Apply deep learning models to account for terrain parameters;
4. Evaluate the possibilities of using multispectral images acquired from a UAV for

mapping of focal salinity of agricultural fields.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.dropbox.com/sh/3i1e7ghg8r7kqwt/AAB3QjFMCKPD7ZDrC4fvPn5_a?dl=0.

https://www.dropbox.com/sh/3i1e7ghg8r7kqwt/AAB3QjFMCKPD7ZDrC4fvPn5_a?dl=0
https://www.dropbox.com/sh/3i1e7ghg8r7kqwt/AAB3QjFMCKPD7ZDrC4fvPn5_a?dl=0
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Appendix A Results of Machine Learning Models Using SAR Data

Dataset Regressor MAE MSE R2 VarMAE VarMSE VarR2 Duration

A
la

ko
l

XGB 0.259 0.345 −1.166 0.027 0.354 2.621 15.78875

RF 0.291 0.437 −6.881 0.026 0.307 135.626 18.61323

LR 0.646 1.139 −39.321 0.048 0.857 3832.852 0.302191

Lasso 0.257 0.386 −1.103 0.025 0.466 2.082 0.297237

ElasticNet 0.257 0.386 −1.103 0.025 0.466 2.082 0.294212

LGBM 0.257 0.386 −1.103 0.025 0.466 2.082 14.26181

Ridge 0.322 0.468 −4.645 0.022 0.479 31.485 0.595438

SVM 0.26 0.407 −1.787 0.028 0.466 12.747 0.342054

K
ap

ch
ag

ay

XGB 0.695 3.47 −0.267 0.146 19.541 0.967 7.313395

RF 1.132 5.466 −11.663 0.139 18.937 664.386 21.02584

LR 1.412 5.04 −10.429 0.085 14.996 517.132 0.341087

Lasso 0.821 3.57 −1.212 0.099 19.35 11.81 0.328122

ElasticNet 0.821 3.57 −1.212 0.099 19.35 11.81 0.31415

LGBM 0.772 3.501 −1.058 0.103 19.255 11.672 18.87905

Ridge 0.905 3.798 −2.641 0.09 18.475 37.292 0.699129

SVM 0.683 3.541 −0.34 0.138 20.373 1.377 0.373001

Sh
el

ek

XGB 0.665 0.864 0.473 0.032 0.209 0.038 50.68989

RF 0.673 0.893 0.432 0.028 0.187 0.074 21.53441

LR 0.813 1.25 0.186 0.037 0.567 0.245 0.352057

Lasso 1.1 1.778 −0.104 0.028 0.374 0.02 0.330147

ElasticNet 1.1 1.778 −0.104 0.028 0.374 0.02 0.311206

LGBM 0.733 0.975 0.387 0.026 0.154 0.034 24.82316

Ridge 0.821 1.016 0.349 0.019 0.125 0.038 0.698132

SVM 0.888 1.243 0.233 0.031 0.296 0.04 0.386967

Fu
ll

D
at

as
et

XGB 0.644 1.991 0.282 0.024 3.542 0.046 28.14647

RF 0.738 2.318 0.093 0.026 3.956 0.131 28.71924

LR 0.913 2.515 −0.02 0.027 3.805 0.033 0.406411

Lasso 0.991 2.522 −0.043 0.023 3.372 0.005 0.380981

ElasticNet 0.991 2.522 −0.043 0.023 3.372 0.005 0.355016

LGBM 0.814 2.178 0.183 0.033 3.721 0.029 11.27983

Ridge 0.884 2.421 0.044 0.023 3.849 0.023 1.218743

SVM 0.791 2.27 0.139 0.031 3.681 0.018 0.627324
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Appendix B Results of Machine Learning Models Using SAR Data and Spectral Indices

Dataset Regressor MAE MSE R2 VarMAE VarMSE VarR2 Duration

A
la

ko
l

XGB 0.262 0.393 −0.713 0.035 0.419 2.186 22.36715

RF 0.324 0.512 −7.397 0.034 0.392 201.885 19.18279

LR 2.862 39.064 −1615.6 6.169 20,898.03 19,891,723 0.36007

Lasso 0.289 0.47 −1.323 0.033 0.619 3.127 0.32513

ElasticNet 0.289 0.47 −1.323 0.033 0.619 3.127 0.30421

LGBM 0.289 0.47 −1.323 0.033 0.619 3.127 7.095027

Ridge 0.379 0.56 −6.025 0.032 0.539 63.356 1.782234

SVM 0.291 0.468 −1.398 0.032 0.608 3.588 0.345077

K
ap

ch
ag

ay

XGB 0.66 3.153 −0.342 0.135 18.206 1.532 10.36428

RF 0.9 4.667 −7.927 0.147 19.196 572.823 25.85497

LR – – – – – – –

Lasso 0.821 3.57 −1.212 0.099 19.35 11.81 0.321146

ElasticNet 0.821 3.57 −1.212 0.099 19.35 11.81 0.310198

LGBM 0.757 3.335 −0.779 0.12 17.878 6.863 8.376564

Ridge 0.919 4.044 −3.189 0.102 19.936 57.022 2.297855

SVM 0.675 3.518 −0.286 0.137 20.212 1.221 0.424862

Sh
el

ek

XGB 0.508 0.579 0.654 0.02 0.101 0.018 46.30717

RF 0.576 0.75 0.527 0.03 0.161 0.065 23.09414

LR – – – – – – –

Lasso 1.1 1.778 −0.104 0.028 0.374 0.02 0.336103

ElasticNet 1.1 1.778 −0.104 0.028 0.374 0.02 0.30322

LGBM 0.655 0.793 0.508 0.024 0.115 0.024 9.146147

Ridge 0.74 0.94 0.395 0.031 0.183 0.088 1.973743

SVM 0.971 1.473 0.1 0.03 0.388 0.028 0.391953

Fu
ll

D
at

as
et

XGB 0.569 1.889 0.339 0.023 3.49 0.057 28.16568

RF 0.692 2.349 0.058 0.032 3.925 0.276 39.8665

LR 0.923 2.43 −0.095 0.023 2.712 0.184 0.409904

Lasso 0.991 2.522 −0.043 0.023 3.372 0.005 0.375001

ElasticNet 0.991 2.522 −0.043 0.023 3.372 0.005 0.338127

LGBM 0.69 1.935 0.325 0.03 3.707 0.048 11.27485

Ridge 0.795 2.211 0.145 0.02 3.66 0.055 4.66742

SVM 0.811 2.242 0.145 0.029 3.573 0.015 0.791433
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Appendix C Regressor Results Using an Optimized Set of Spectral Indices

Fu
ll

D
at

as
et

XGB 0.587 1.93 0.305 0.027 3.455 0.048 23.44931

RF 0.706 2.485 −0.064 0.032 3.792 0.486 27.9018

LR 0.8 2.147 0.136 0.021 3.152 0.057 0.404916

Lasso 0.991 2.522 −0.043 0.023 3.372 0.005 0.378987

ElasticNet 0.991 2.522 −0.043 0.023 3.372 0.005 0.352054

LGBM 0.646 1.939 0.321 0.023 3.733 0.046 10.58872

Ridge 0.732 2.043 0.266 0.02 3.742 0.037 1.028286

SVM 0.556 1.958 0.336 0.032 3.936 0.059 0.628671

Appendix D Results of Regressors with Optimized SAR Dataset and Optical Indices

Fu
ll

D
at

as
et

XGB 0.575 1.858 0.356 0.023 3.526 0.061 36.6489

RF 0.685 2.275 0.109 0.027 3.875 0.176 23.21074

LR 0.88 2.412 −0.065 0.021 3.024 0.225 0.240527

Lasso 0.991 2.522 −0.043 0.023 3.372 0.005 0.152631

ElasticNet 0.991 2.522 −0.043 0.023 3.372 0.005 0.155417

LGBM 0.671 1.971 0.314 0.023 3.89 0.051 3.863818

Ridge 0.764 2.104 0.221 0.02 3.671 0.033 1.490418

SVM 0.71 2.053 0.273 0.029 3.786 0.034 0.38091

N.B. The optimized set of input parameters includes: ‘dem’, ‘temp’, ‘slope’, ‘dissimi-
larity_vv_1’, ‘contrast_vv_1’, ‘homogeneity_vv_1’, ‘correlation_vv_1’, ‘entropy_vv_1’, ‘dis-
similarity_vh_1’, ‘contrast_vh_1’, ‘homogeneity_vh_1’, ‘correlation_vh_1’, ‘entropy_vh_1’,
‘gamma_vv_1’, ‘gamma_vh_1’, ‘NDSI1’, ‘S31’, ‘SI11’, ‘SI31’, ‘SI81’, ‘NDSIre1’, ‘SI3re1’,
‘SSRIre1’, ‘SSRI1’.
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